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HIGHLIGHTS

e Poisson and conditional logit regressions are polar location choice models.
o A dissimilarity parameter A covers the continuum between these models.

e The dissimilarity parameter is not identified in Schmidheiny and Briilhart (2011).

e We show that a choice consistent normalisation identifies A.

e With panel data, a Poisson regression approach facilitates the estimation of A.
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When estimating location choices, Poisson regressions and conditional logit models yield identical coeffi-
cient estimates (Guimaraes et al., 2003). These econometric models involve polar assumptions as regards
the similarity of the different locations. Schmidheiny and Briilhart (2011) reconcile these polar cases by
introducing a fixed outside option transforming the conditional logit into a nested logit framework. This
gives rise to a dissimilarity parameter (A € [0; 1]) equalling 1 in Poisson regressions (with completely
dissimilar locations) and 0 in conditional logit models (with completely similar locations). The dissimi-
larity parameter is not identified in Schmidheiny and Briilhart (2011). We show that a choice consistent

EL classification:
]C2 classification normalisation identifies A and that, with panel data, its estimation is facilitated by adopting a Poisson
regression approach.
Keywords: © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This paper extends recent firm location choice models of
Schmidheiny and Briilhart (2011) - henceforth SB - to identify a
dissimilarity parameter (A) between alternative locations by using
panel Poisson regressions.

Let the firms undertaking a location choice be indexed with
i=1,...,N.Source countries are indexed withs = 1, ..., S. The
choice set includes host locations indexed withh = 1,...,H. A
location choice denoted by [; ¢, reveals that a host h with the profit
opportunity E[IT; ;4] outperforms the other locations h’ that could
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have been chosen instead, that is

o = 1 E[Misn] > E[MTigw]Vh# R 1)
ish =10 otherwise.

A conditional logit model employs (1) as the dependent variable.
Thereby, choice-specific variables xs, (reported in logarithms)
linearly affect profit expectations E[IT; ¢] via

E[IT; sn] = 85 + X, + €5, (2)

where & absorbs source-specific factors. Furthermore, § are co-
efficients to be estimated. The stochastic component ¢; 5, follows a
Gumbel distribution with location and scale parameter normalised
to, respectively, 0 and 1. The probability that a firm of s chooses h
equals

b ED(B) g -
sh S / E[N] .
exp (Xsh'B)

2

s=1h

M=

1
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The log-likelihood function equals

S H
= Z Z Nsp ln(Psh)

s=1 h=1

:ZS::Znsh X — Z[nshanexp Shﬁ“ (4)

s=1 | h=1

InL(B)

and permits us to estimate 8. Guimaraes et al. (2003) show that
a count regression onto ng, (the number of location choices) pro-
vides an alternative to estimate §. To see this, multiply (3) with the
denominator, which yields the (panel) Poisson regression

E[i%] = exp (8 + x,,8) = asE[nf} ], (5)

where o; = In(6;) and E[n = exp(x;,8). Assuming that 7° nsh is
Poisson distributed with the conditional mean function exp(d; +
x;, B) of (5) yields a log-likelihood contribution of s given by

H
In L2 (o, B) = —ats Y _ exp(x;yB)
h=1
H H H
+ Ina; Z Nen + Z NshXep B — Z In ng,! (6)
h=1 h=1 h=1

Equating the first derivative with respect to «s with 0, and solving
for «; yields the maximum likelihood estimator of

5

Nsh —

@ = G = o )
hzl exp (x},8) s

Hence, o absorbs the discrepancy between the observed num-
ber of location choices n; and the number E[n;] expected from a
Poisson distribution. Thereby, 0 < «s; < 1 implies that the ob-
served number of location choices is “underreported”. Substituting
(7) into (6) and summing over S yields the log-likelihood function
of the fixed effects Poisson regression

In”(B) = Z [Z”sh"shﬂ Z |:n5h anexp Shﬂ i”

h=1 h=1
+ constant, (8)
which looks like a multinomial logit model (Hausman et al.,
1984, p. 919).! Specifically, since (8) differs from (4) only by a con-

stant, the corresponding estimates for 8 are identical!
SB observe that the elasticity of the Poisson regression, given by

npc _ 3E['ﬁf,f] Xsh,k
k Oxshx E[M]
differs from the conditional logit model, given by

nd _ aE[ni] Xsh,k
ST Bxguk Elngn

= 13/(9 (9)

=(1 _Psh)ﬁkv (10)

whereby By denotes the coefficient pertaining to X x. This reflects
that Poisson regressions deem the locations to be completely
dissimilar. Hence, a change of x,p, ; affects the number of location
choices with h, but not with h'. SB refer to this as a “positive sum
world”. Conversely, the conditional logit model is a “zero sum
world” where the locations represent completely similar options.

1 For a textbook discussion of the fixed effects Poisson regression, see Cameron
and Trivedi (1998, ch. 9.3).

Hence, when more firms choose h, this triggers an equivalent
reduction elsewhere.

SB show that the introduction of an outside option transforms
the conditional logit into a nested logit model covering the contin-
uum between the zero and positive sum world. The outside option
h = 0 is independent of xg;. The corresponding profit equals

E[Hi,so] = ‘Ss + €i50- (11)

Since the outside option contains only one alternative, this nested
logit model, depicted in Fig. 1, involves the partial degeneracy dis-
cussed in Hunt (2000). The probability Py, depends now on the
probability P, of not choosing the outside option and the (condi-
tional) probability P, to locate in h > 0, that is

Py :Pﬂs'Psh\w

adas

5 fowtiss)]

[exp (8550 )] [Zl hg exp (x Shﬂgs‘”)} N
. exp( ;hﬁgsﬂ) (12)
S H
> (X;hﬂgsﬂ)
s=1 h:l
S H (%*1)
exp (50) [ £ 3 o0 (<) |
— s=1h=1 ) (13)

fex0 (] + |2 2 e (6,59)|

The inclusive value parameter (A{/¢?) € [0, 1] measures the dis-
similarity between the locations h > 0. Specifically,

(A/s9) =1 —p? (14)

where p? € [0, 1] is the correlation between the stochastic profit
components €; sujp Of investing in different locations. Consider the
outside option o offering only the basic “choice” of h = 0. Hunt
(2000) observes that the distinction between unconditional and
conditional probabilities is here obsolete, as P, = 1and Py =
Pos % Pypjo. The probability of choosing h = 0 equals

Pos =PSO=(1_PDS)

_ exp (asgso)kg ) (15)

x

e ()" + [i - exp (X;hﬂgf)] ’

s=1h=1

The coefficients 8 can be estimated by maximum likelihood from
(13) and (15). However, empmcally, only the correlation p?, but
not the scale parameters A? and ¢?, can be estimated from the data
(Hunt, 2000). This over—identification problem necessitates some
normalisation. SB (p. 217) set ¢/ = 1, ¢ = 1,and A{ = 1 where-
fore (13) and (15) become

o) [ ewwn)]

S

e 30+ | XX exp s Shﬂ)]k?

s=1h=1
_ exp(xy ) (EIN°] S~
~exp(8y) + (EIN°D¥

(16)
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Fig. 1. Location choice with outside option.

exp (&)

s H s
exp (&) + [Z > exp (x;hﬂ)]

s=1h=1
exp($
_ p(5s) i _ (17)
exp(ds) + (E[N°])*s
The nested logit log-likelihood function coincides with (4). Again,
the estimates for g8 are identical and the normalisation of the scale
parameters does not affect 3.
The nested logit elasticity equals

OE[nG]
0Xsh k

nl  __
nsh,k -

[1 — Psuo(1 — A2Ps0)1Bks (18)

and maps mathematically into the conditional logit model when
A? = 0 and into the Poisson regression when A? = 1 and
Psy = 1. Hence, though the conditional logit model and the Poisson
regression may have different econometric underpinnings, they
share a functional form that connects them with the same, suitably
parameterised nested logit model.

2. Choice consistent normalisation

The SB approach has two shortcomings. Firstly, the normalisa-
tion of A and ¢ leads to different nested logit models with differ-
ent elasticities (Hensher and Greene, 2002). Koppelman and Wen
(1998) suggest that any normalisation should at least be invariant
to adding a constant A to all profits of (2) and (11) since this leaves
the ranking of the final options unchanged. Appendix A shows that
(16) and (17) do not fulfil this property. Secondly, §; and A? cannot
be separately identified (SB, 2011, p. 217) since they appear in the
same first order condition

H As
exp(8;) = ? [Z exp (x;hﬁ):| , (19)
25 | h=1

where n,s and n,s denote, respectively, the number of times the
outside option h = 0 or location h > 0 has been chosen.

Adopting the following choice-consistent normalisation avoids
these caveats.

Proposition 1. Setting A} = A2 = A, ¢ = l,andg) = 0
represents a choice-consistent normalisation in the sense that adding
a constant A to the profits (2) and (11) does not affect the choice
outcome.

Proof. Appendix A. O

With Proposition 1, (13) and (15) become

s H (As—1)
exp (5,8) [ £ 3 exp (1) |

s=

Psh = s H *s
1+ [Zl h; exp (x;hﬂ):|
_ (EIN°Y%sD ,
= T G exp (xy,8) (20)
1 1
PsO = (21)

T 14 (EIN)YS

s H s
1+ [;};exp (x;hﬂ)}

Proposition 1implies that exp(8;c°)* = exp(0)*s = 1and, hence,
normalises to 1 the contribution of the outside option. This is un-
problematic since the parameter A, pertaining to E[N°]*s already
weights the importance between the outside option h = 0 and the
locations h > 0.

When ¢? = 1,(14) implies that A; = /1 — ps, and the correla-
tion ps reflects the degree of dissimilarity between the locations.

3. Poisson regression with A

Estimating A; from (19) involves n,;. However, how many times
the outside option has been chosen is often unobservable. Counting
location choices provides a possible remedy for this.

Similar to Section 1, transforming the nested logit model into
a Poisson regression requires the multiplication of Py, of (20) with
the denominator E[N] = 1+ (E[N®])’s to obtain

P4EIN] = (E[N°D%~ exp (x},,8)
—_—

= osE[n¥]. (22)

pCcu
E[ng"]

This resembles (5) with group effects parameterised by o; =
E[N°]%s~V_When A, = 1, we have E[N?]»~1 = 1 and the basic
Poisson regression with completely dissimilar elemental options
arises. The outside option is irrelevant implying that E[7,"] equals
E[ni;]. Conversely, when A; < 1, the outside option h = 0 is
similar to the option of investing in locations h > 0. The greater
this similarity, the more the number E[1%,"] of observed location
choices differs from E[n%; ] of a basic count process.
Solving a; = E[N?]%s~D for the A, yields

_ In(E[N®]a)
* 7 In(E[N°])
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Recall that «s can be estimated from (7) and reflects the degree of
underreporting. The Poisson regression with A; = 1 requires that
o5 = 1.This means that there is no underreporting, which is maybe
intuitive since the outside option does not affect the choice of a
location that differs completely from the alternatives. The condi-
tional logit model with A; = 0 requires as = 1/E[N®]. This implies
a degree of underreporting increasing with the number E[N?] of
location choices. Typically, «; is close to 0, even when the sample
contains a relatively modest number of location choices N°.

The identification of (23) requires that E[N?] > 0 (we do actu-
ally have location choices) and that we have panel data permitting
us to calculate the group effects (7).

Appendix B shows that the elasticity of E[fif;"] with respect to
Xsh.x equals

b = [1 = Pyuo(1 — A9)1Br. (24)

This is again consistent with SB. Specifically, A; = 1 returns the
Poisson elasticity of (9) and As = 0 the conditional logit elasticity of
(10). Also, evaluating (24) yields 15, = AsBx+(1—25) (1—Payy) Br,
meaning that the elasticity of the Poisson regression with a fixed
outside option is a linear average between (9) and (10).

4. Conclusion

This paper extends SB by a choice consistent framework, which
permits us to identify the dissimilarity parameter A. Furthermore,
using a Poisson regression facilitates the estimation of the dissim-
ilarity parameter.
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Appendix A. Proof Proposition 1

The choice consistency (as defined in the text) of the normalisa-
tion of Proposition 1 (A{ = A? = As; ¢ = 1; ¢ = 0) reflects the
well known result that multinomial logit distributions are homo-
geneous of degree zero. This implies that adding a constant A to all
arguments entering Ps, = PysPsp 0f (20) leaves the probabilities
Py, - and hence the choice outcome - unchanged. The same holds
for Py of (21).2

The choice consistency does not hold for the SB normalisation
(¢? = 1,60 = 1; 1 = 1). For example, adding A to Py of (17)
yields

exp(ds + 4)

*_
PsO_

S H s
[exp (6 + A)] + [Z > exp (xgB + A)]

s=1h=1

2 A formal derivation of these results can be made available on request.

and
. exp(8;) exp(A)
Fo = S H 2
exp(d;) exp(A) + { [Z hZ exp (x;hﬂ)} eXP(A)}
s=1h=1
_ exp(5;) exp(A)
a . s H A
exp(8s) exp(A) + exp(A)*s [(Z hZ eXP(x;hﬂ)>]
s=1h=1
7é PsO~

Appendix B. Defining the elasticity 7},

The elasticity n},, is defined as

cu
pcu BE[ﬁfh ] Xsh,k

h .
S aXsh’k E nf,f”]

With E["] = (EIN°])%~ exp(x,B) of (22) and E[N°] = Y5
25:1 exp(x;, B), we have

Moy = {(xs — 1)(E[N°])*—2) exp(xsh,k)ﬁ exp(Xsh k)

Xsh,k

_ B Xsh,k
+ E[N?1%™D exp(Xep k) —— : .
("] p( Sh'k)xsh,k E[N°]%s=D exp(Xsh k)

Cancelling terms yields
Mo = (s — D(E[N°]) " exp(xy, ) Br + B
Since (E[N°])~! exp(x;, B) equals Py, according to (12), we have

ot =114 (ks — DPaiolBe = [1— (1 — As)Pspio] i
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