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h i g h l i g h t s

• Poisson and conditional logit regressions are polar location choice models.
• A dissimilarity parameter λ covers the continuum between these models.
• The dissimilarity parameter is not identified in Schmidheiny and Brülhart (2011).
• We show that a choice consistent normalisation identifies λ.
• With panel data, a Poisson regression approach facilitates the estimation of λ.
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a b s t r a c t

When estimating location choices, Poisson regressions and conditional logit models yield identical coeffi-
cient estimates (Guimarães et al., 2003). These econometric models involve polar assumptions as regards
the similarity of the different locations. Schmidheiny and Brülhart (2011) reconcile these polar cases by
introducing a fixed outside option transforming the conditional logit into a nested logit framework. This
gives rise to a dissimilarity parameter (λ ∈ [0; 1]) equalling 1 in Poisson regressions (with completely
dissimilar locations) and 0 in conditional logit models (with completely similar locations). The dissimi-
larity parameter is not identified in Schmidheiny and Brülhart (2011). We show that a choice consistent
normalisation identifies λ and that, with panel data, its estimation is facilitated by adopting a Poisson
regression approach.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper extends recent firm location choice models of
Schmidheiny and Brülhart (2011) – henceforth SB – to identify a
dissimilarity parameter (λ) between alternative locations by using
panel Poisson regressions.

Let the firms undertaking a location choice be indexed with
i = 1, . . . ,N . Source countries are indexed with s = 1, . . . , S. The
choice set includes host locations indexed with h = 1, . . . ,H . A
location choice denoted by li,sh reveals that a host hwith the profit
opportunity E[Πi,sh] outperforms the other locations h′ that could
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have been chosen instead, that is

li,sh =


1 E[Πi,sh] > E[Πi,sh′ ] ∀ h ≠ h′

0 otherwise. (1)

A conditional logit model employs (1) as the dependent variable.
Thereby, choice-specific variables xsh (reported in logarithms)
linearly affect profit expectations E[Πi,sh] via

E[Πi,sh] = δs + x′

shβ + ϵi,sh, (2)

where δs absorbs source-specific factors. Furthermore, β are co-
efficients to be estimated. The stochastic component ϵi,sh follows a
Gumbel distributionwith location and scale parameter normalised
to, respectively, 0 and 1. The probability that a firm of s chooses h
equals

Psh =
exp


x′

shβ


S
s=1

H
h=1

exp

x′

shβ
 =

E[ncl
sh]

E[N]
. (3)
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The log-likelihood function equals

ln Lcl(β) =

S
s=1

H
h=1

nsh ln(Psh)

=

S
s=1


H

h=1

nshx′

shβ −

H
h=1


nsh ln

H
h=1

exp

x′

shβ


(4)

and permits us to estimate β . Guimarães et al. (2003) show that
a count regression onto nsh (the number of location choices) pro-
vides an alternative to estimate β . To see this, multiply (3) with the
denominator, which yields the (panel) Poisson regression

E[npc
sh ] = exp


δs + x′

shβ


= αsE[npc
sh ], (5)

where αs = ln(δs) and E[npc
sh ] = exp(x′

shβ). Assuming thatnpc
sh is

Poisson distributed with the conditional mean function exp(δs +

x′

shβ) of (5) yields a log-likelihood contribution of s given by

ln Lpcs (αs, β) = −αs

H
h=1

exp(x′

shβ)

+ lnαs

H
h=1

nsh +

H
h=1

nshx′

shβ −

H
h=1

ln nsh! (6)

Equating the first derivative with respect to αs with 0, and solving
for αs yields the maximum likelihood estimator of

αs =

H
h=1

nsh

H
h=1

exp

x′

shβ
 =

ns

E[ns]
. (7)

Hence, αs absorbs the discrepancy between the observed num-
ber of location choices ns and the number E[ns] expected from a
Poisson distribution. Thereby, 0 < αs < 1 implies that the ob-
served number of location choices is ‘‘underreported’’. Substituting
(7) into (6) and summing over S yields the log-likelihood function
of the fixed effects Poisson regression

ln Lpc(β) =

S
s=1


H

h=1

nshx′

shβ −

H
h=1


nsh ln

H
h=1

exp

x′

shβ


+ constant, (8)

which looks like a multinomial logit model (Hausman et al.,
1984, p. 919).1 Specifically, since (8) differs from (4) only by a con-
stant, the corresponding estimates for β are identical!

SB observe that the elasticity of the Poisson regression, given by

η
pc
k =

∂E[npc
sh ]

∂xsh,k

xsh,k
E[npc

sh ]
= βk, (9)

differs from the conditional logit model, given by

ηcl
sh,k =

∂E[ncl
sh]

∂xsh,k

xsh,k
E[nsh]

= (1 − Psh)βk, (10)

whereby βk denotes the coefficient pertaining to xsh,k. This reflects
that Poisson regressions deem the locations to be completely
dissimilar. Hence, a change of xsh,k affects the number of location
choices with h, but not with h′. SB refer to this as a ‘‘positive sum
world’’. Conversely, the conditional logit model is a ‘‘zero sum
world’’ where the locations represent completely similar options.

1 For a textbook discussion of the fixed effects Poisson regression, see Cameron
and Trivedi (1998, ch. 9.3).

Hence, when more firms choose h, this triggers an equivalent
reduction elsewhere.

SB show that the introduction of an outside option transforms
the conditional logit into a nested logit model covering the contin-
uum between the zero and positive sumworld. The outside option
h = 0 is independent of xsh. The corresponding profit equals

E[Πi,s0] = δs + ϵi,s0. (11)

Since the outside option contains only one alternative, this nested
logit model, depicted in Fig. 1, involves the partial degeneracy dis-
cussed in Hunt (2000). The probability Psh depends now on the
probability Pøs of not choosing the outside option and the (condi-
tional) probability Psh|ø to locate in h > 0, that is

Psh = Pøs · Psh|ø

=


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs


exp


δsς o

s

λos
+


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs

·
exp


x′

shβςø
s


S

s=1

H
h=1

exp

x′

shβςø
s

 (12)

=

exp

x′

shβςø
s

 
S

s=1

H
h=1

exp

x′

shβςø
s


λøs
ςøs

−1



exp


δsς o

s

λos
+


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs

. (13)

The inclusive value parameter (λø
s /ς

ø
s ) ∈ [0, 1] measures the dis-

similarity between the locations h > 0. Specifically,

(λø
s /ς

ø
s ) =


1 − ρø

s (14)

where ρø
s ∈ [0, 1] is the correlation between the stochastic profit

components ϵi,sh|ø of investing in different locations. Consider the
outside option o offering only the basic ‘‘choice’’ of h = 0. Hunt
(2000) observes that the distinction between unconditional and
conditional probabilities is here obsolete, as Ps0|o = 1 and Ps0 =

Pos × Ps0|o. The probability of choosing h = 0 equals

Pos = Ps0 = (1 − Pøs)

=
exp


δsς

o
s

λos


exp


δsς o

s

λos
+


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs

. (15)

The coefficients β can be estimated by maximum likelihood from
(13) and (15). However, empirically, only the correlation ρø

s , but
not the scale parameters λø

s and ςø
s , can be estimated from the data

(Hunt, 2000). This over-identification problem necessitates some
normalisation. SB (p. 217) set ςø

s = 1, ς o
s = 1, and λo

s = 1 where-
fore (13) and (15) become

Psh =

exp

x′

shβ
 

S
s=1

H
h=1

exp

x′

shβ
(λøs −1)

exp (δs) +


S

s=1

H
h=1

exp

x′

shβ
λøs

=
exp(x′

shβ)(E[Nø
])(λ

ø
s −1)

exp(δs) + (E[Nø])λ
ø
s

(16)
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Fig. 1. Location choice with outside option.

P0s =
exp (δs)

exp (δs) +


S

s=1

H
h=1

exp

x′

shβ
λøs

=
exp(δs)

exp(δs) + (E[Nø])λ
ø
s

. (17)

The nested logit log-likelihood function coincides with (4). Again,
the estimates for β are identical and the normalisation of the scale
parameters does not affect β .

The nested logit elasticity equals

ηnl
sh,k =

∂E[nnl
sh]

∂xsh,k
= [1 − Psh|ø(1 − λø

s Ps0)]βk, (18)

and maps mathematically into the conditional logit model when
λø
s = 0 and into the Poisson regression when λø

s = 1 and
Ps0 = 1. Hence, though the conditional logit model and the Poisson
regression may have different econometric underpinnings, they
share a functional form that connects themwith the same, suitably
parameterised nested logit model.

2. Choice consistent normalisation

The SB approach has two shortcomings. Firstly, the normalisa-
tion of λ and ς leads to different nested logit models with differ-
ent elasticities (Hensher and Greene, 2002). Koppelman and Wen
(1998) suggest that any normalisation should at least be invariant
to adding a constant∆ to all profits of (2) and (11) since this leaves
the ranking of the final options unchanged. Appendix A shows that
(16) and (17) do not fulfil this property. Secondly, δs and λø

s cannot
be separately identified (SB, 2011, p. 217) since they appear in the
same first order condition

exp(δs) =
nos

nøs


H

h=1

exp

x′

shβ
λøs

, (19)

where nos and nøs denote, respectively, the number of times the
outside option h = 0 or location h > 0 has been chosen.

Adopting the following choice-consistent normalisation avoids
these caveats.

Proposition 1. Setting λo
s = λø

s = λs, ςø
s = 1, and ς o

s = 0
represents a choice-consistent normalisation in the sense that adding
a constant ∆ to the profits (2) and (11) does not affect the choice
outcome.

Proof. Appendix A. �

With Proposition 1, (13) and (15) become

Psh =

exp

x′

shβ
 

S
s=1

H
h=1

exp

x′

shβ
(λs−1)

1 +


S

s=1

H
h=1

exp

x′

shβ
λs

=
(E[Nø

])(λs−1)

1 + (E[Nø])λs
exp


x′

shβ


(20)

Ps0 =
1

1 +


S

s=1

H
h=1

exp

x′

shβ
λs

=
1

1 + (E[Nø])λs
, (21)

Proposition 1 implies that exp(δsς o
s )

λos = exp(0)λs = 1 and, hence,
normalises to 1 the contribution of the outside option. This is un-
problematic since the parameter λs pertaining to E[Nø

]
λs already

weights the importance between the outside option h = 0 and the
locations h > 0.

When ςø
s = 1, (14) implies that λs =

√
1 − ρs, and the correla-

tion ρs reflects the degree of dissimilarity between the locations.

3. Poisson regression with λs

Estimating λs from (19) involves nos. However, howmany times
the outside optionhas been chosen is often unobservable. Counting
location choices provides a possible remedy for this.

Similar to Section 1, transforming the nested logit model into
a Poisson regression requires the multiplication of Psh of (20) with
the denominator E[N] = 1 + (E[Nø

])λs to obtain

E[npcu
sh ] = PshE[N] = (E[Nø

])(λs−1)  
=αs

exp

x′

shβ


= αsE[npc
sh ]. (22)

This resembles (5) with group effects parameterised by αs =

E[Nø
]
(λs−1). When λs = 1, we have E[Nø

]
(λs−1)

= 1 and the basic
Poisson regression with completely dissimilar elemental options
arises. The outside option is irrelevant implying that E[npcu

sh ] equals
E[npc

sh ]. Conversely, when λs < 1, the outside option h = 0 is
similar to the option of investing in locations h > 0. The greater
this similarity, the more the number E[npcu

sh ] of observed location
choices differs from E[npc

sh ] of a basic count process.
Solving αs = E[Nø

]
(λs−1) for the λs yields

λs =
ln(E[Nø

]αs)

ln(E[Nø])
. (23)
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Recall that αs can be estimated from (7) and reflects the degree of
underreporting. The Poisson regression with λs = 1 requires that
αs = 1. Thismeans that there is no underreporting,which ismaybe
intuitive since the outside option does not affect the choice of a
location that differs completely from the alternatives. The condi-
tional logit model with λs = 0 requires αs = 1/E[Nø

]. This implies
a degree of underreporting increasing with the number E[Nø

] of
location choices. Typically, αs is close to 0, even when the sample
contains a relatively modest number of location choices Nø.

The identification of (23) requires that E[Nø
] > 0 (we do actu-

ally have location choices) and that we have panel data permitting
us to calculate the group effects (7).

Appendix B shows that the elasticity of E[npcu
sh ] with respect to

xsh,k equals

η
pcu
sh,k = [1 − Psh|ø(1 − λs)]βk. (24)

This is again consistent with SB. Specifically, λs = 1 returns the
Poisson elasticity of (9) andλs = 0 the conditional logit elasticity of
(10). Also, evaluating (24) yields η

pcu
sh,k = λsβk+(1−λs)(1−Psh|ø)βk,

meaning that the elasticity of the Poisson regression with a fixed
outside option is a linear average between (9) and (10).

4. Conclusion

This paper extends SB by a choice consistent framework, which
permits us to identify the dissimilarity parameter λ. Furthermore,
using a Poisson regression facilitates the estimation of the dissim-
ilarity parameter.

Acknowledgement

Insightful comments providedby the referee helpedus to clarify
several aspects of this paper.

Appendix A. Proof Proposition 1

The choice consistency (as defined in the text) of the normalisa-
tion of Proposition 1 (λo

s = λø
s = λs; ςø

s = 1; ς o
s = 0) reflects the

well known result that multinomial logit distributions are homo-
geneous of degree zero. This implies that adding a constant∆ to all
arguments entering Psh = PøsPsh|ø of (20) leaves the probabilities
Psh – and hence the choice outcome – unchanged. The same holds
for Ps0 of (21).2

The choice consistency does not hold for the SB normalisation
(ςø

s = 1, ς o
s = 1; λo

s = 1). For example, adding ∆ to Ps0 of (17)
yields

P∗

s0 =
exp(δs + ∆)

[exp (δs + ∆)] +


S

s=1

H
h=1

exp

x′

shβ + ∆
λøs

2 A formal derivation of these results can be made available on request.

and

P∗

s0 =
exp(δs) exp(∆)

exp(δs) exp(∆) +


S

s=1

H
h=1

exp

x′

shβ


exp(∆)

λøs

=
exp(δs) exp(∆)

exp(δs) exp(∆) + exp(∆)λ
ø
s


S

s=1

H
h=1

exp(x′

shβ)

λøs

≠ Ps0.

Appendix B. Defining the elasticity η
pcu
sh,k

The elasticity η
pcu
sh,k is defined as

η
pcu
sh =

∂E[npcu
sh ]

∂xsh,k

xsh,k
E[npcu

sh ]
.

With E[npcu
sh ] = (E[Nø

])(λs−1) exp(x′

shβ) of (22) and E[Nø
] =

S
s=1H

h=1 exp(x
′

shβ), we have

η
pcu
sh =


(λs − 1)(E[Nø

])(λs−2) exp(xsh,k)
βk

xsh,k
exp(xsh,k)

+ E[Nø
]
(λs−1) exp(xsh,k)

βk

xsh,k


xsh,k

E[Nø](λs−1) exp(xsh,k)
.

Cancelling terms yields

η
pcu
sh = (λs − 1)(E[Nø

])−1 exp(x′

shβ)βk + βk.

Since (E[Nø
])−1 exp(x′

shβ) equals Psh|ø according to (12), we have

η
pcu
sh = [1 + (λs − 1)Psh|ø]βk = [1 − (1 − λs)Psh|ø]βk.
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